
Spyder Documentation
Release 3

Pierre Raybaut

Aug 31, 2017

Contents

1 Overview 3

2 Installation 5

2.1 Installing on Windows Vista/7/8/10 . 5

2.2 Installing on MacOS X . 6

2.3 Installing on Linux . 7

2.4 Installing or running directly from source . 7

2.5 Installing the development version . 9

2.6 Help and support . 9

3 Command line options 11

4 Editor 13

4.1 How to define a code cell . 15

5 IPython Console 17

5.1 Reloading modules: the User Module Reloader (UMR) . 19

6 Debugging 21

6.1 Debugging with pdb . 21

7 Console 23

8 Variable Explorer 25

8.1 Supported types . 28

9 Help 31

10 Projects 35

10.1 Version Control Integration . 37

11 Static code analysis 39

12 File Explorer 41

13 History log 45

14 Find in files 47

i

15 Online help 49

16 Internal Console 51

ii

Spyder Documentation, Release 3

Spyder is the Scientific PYthon Development EnviRonment:

• a powerful interactive development environment for the Python language with advanced editing, interactive

testing, debugging and introspection features

• and a numerical computing environment thanks to the support of IPython (enhanced interactive Python inter-

preter) and popular Python libraries such as NumPy (linear algebra), SciPy (signal and image processing) or

matplotlib (interactive 2D/3D plotting).

Spyder may also be used as a library providing powerful console-related widgets for your PyQt-based applications –

for example, it may be used to integrate a debugging console directly in the layout of your graphical user interface.

Spyder websites:

• Downloads, bug reports and feature requests: https://github.com/spyder-ide/spyder

• Discussions: http://groups.google.com/group/spyderlib

Contents:

Contents 1

https://github.com/spyder-ide/spyder
http://groups.google.com/group/spyderlib

Spyder Documentation, Release 3

2 Contents

CHAPTER 1

Overview

Spyder is a Python development environment with the following key features:

Key features:

• general features:

– MATLAB-like PYTHONPATH management dialog box (works with all consoles)

– Windows only: current user environment variables editor

– direct links to documentation (Python, Matplotlib, !NumPy, !Scipy, etc.)

– direct link to Python(x,y) launcher

– direct links to !QtDesigner, !QtLinguist and !QtAssistant (Qt documentation)

• preferences dialog box:

– keyboard shortcuts

– syntax coloring schemes (source editor, history log, help)

– console: background color (black/white), automatic code completion, etc.

– and a lot more...

• Editor:

– syntax coloring (Python, C/C++, Fortran)

– breakpoints and conditional breakpoints (debugger: pdb)

– run or debug Python scripts (see console features)

– run configuration dialog box:

* working directory

* command line options

* run in a new Python interpreter or in an existing Python interpreter or IPython client

* Python interpreter command line options

3

Spyder Documentation, Release 3

– code outline explorer: functions, classes, if/else/try/... statements

– powerful code introspection features (powered by rope):

* code completion

* calltips

* go-to-definition: go to object (any symbol: function, class, attribute, etc.) definition by pressing

Ctrl+Left mouse click on word or Ctrl+G (default shortcut)

– occurrence highlighting

– typing helpers (optional):

* automatically insert closing parentheses, braces and brackets

* automatically unindent after ‘else’, ‘elif’, ‘finally’, etc.

– to-do lists (TODO, FIXME, XXX)

– errors/warnings (real-time code analysis provided by pyflakes)

– integrated static code analysis (using pylint)

– direct link to winpdb external debugger

• Console:

– all consoles are executed in a separate process

– code completion/calltips and automatic link to help (see below)

– open Python interpreters or basic terminal command windows

– run Python scripts (see source editor features)

– variable explorer:

* GUI-based editors for a lot of data types (numbers, strings, lists, arrays, dictionaries, ...)

* import/export data from/to a lot of file types (text files, !NumPy files, MATLAB files)

* multiple array/list/dict editor instances at once, thus allowing to compare variable contents

* data visualization

• History log

• Help:

– provide documentation or source code on any Python object (class, function, module, ...)

– documentation may be displayed as an html page thanks to the rich text mode (powered by sphinx)

• Online help: automatically generated html documentation on installed Python modules

• Find in files: find string occurrences in a directory, a mercurial repository or directly in PYTHONPATH (support

for regular expressions and included/excluded string lists)

• File Explorer

• Projects

Spyder may also be used as a PyQt5 or PyQt4 extension library (module ‘spyder’). For example, the Python interactive

shell widget used in Spyder may be embedded in your own PyQt5 or PyQt4 application.

4 Chapter 1. Overview

CHAPTER 2

Installation

Spyder is quite easy to install on Windows, Linux and MacOS X. Just the read the following instructions with care.

Installing on Windows Vista/7/8/10

The easy way

Spyder is already included in these Python Scientific Distributions:

1. Anaconda

2. WinPython

3. Python(x,y)

You can start using it immediately after installing one of them (you only need to install one!).

The hard way

If you want to install Spyder directly, you need to follow these steps:

1. Install the essential requirements:

• The Python programming language

• PyQt5 (recommended) or PyQt4

2. Install Spyder and its dependencies by running this command:

pip install spyder

5

http://continuum.io/downloads.html
https://winpython.github.io/
https://code.google.com/p/pythonxy
http://www.python.org/
http://www.riverbankcomputing.co.uk/software/pyqt/download5
http://www.riverbankcomputing.co.uk/software/pyqt/download

Spyder Documentation, Release 3

Updating Spyder

You can update Spyder by:

• Updating Anaconda, WinPython or Python(x,y).

• Or using this command (in case you don’t use any of those scientific distributions):

pip install --upgrade spyder

Note: This command will also update all Spyder dependencies

Installing on MacOS X

The easy way

Thanks to the Spyder team and Continuum, you have two alternatives:

1. Use the Anaconda Python distribution.

2. Use our DMG installers, which can be found here.

Note: The minimal version to run our DMG’s is Mavericks (10.9) since Spyder 2.3.5. Previous versions

work on Lion (10.7) or higher.

The hard way

Thanks to the MacPorts project, Spyder can be installed using its port package manager. There are several versions

available from which you can choose from.

Warning: It is known that the MacPorts version of Spyder is raising this error: ValueError:

unknown locale: UTF-8, which doesn’t let it start correctly.

To fix it you will have to set these environment variables in your ~/.profile (or ~/.bashrc)

manually:

export LANG=en_US.UTF-8

export LC_ALL=en_US.UTF-8

6 Chapter 2. Installation

http://www.continuum.io/
http://continuum.io/downloads.html
https://github.com/spyder-ide/spyder/releases
http://www.macports.org/ports.php?by=name&substr=spyder

Spyder Documentation, Release 3

Installing on Linux

Please refer to the Requirements section to see what other packages you might need.

1. Ubuntu:

• Using the official package manager: sudo apt-get install spyder.

Note: This package could be slightly outdated. If you find that is the case, please use the Debian package

mentioned below.

• Using the pip package manager:

– Installing: sudo pip install spyder

– Updating: sudo pip install -U spyder

2. Debian Unstable:

Using the package manager: sudo apt-get install spyder

The Spyder’s official Debian package is available here

3. Other Distributions

Spyder is also available in other GNU/Linux distributions, like

• Archlinux

• Fedora

• Gentoo

• openSUSE

• Mageia

Please refer to your distribution’s documentation to learn how to install it there.

Installing or running directly from source

Requirements

The requirements to run Spyder are:

• Python 2.7 or >=3.3

• PyQt5 >=5.2 or PyQt4 >=4.6.0 (PyQt5 is recommended).

• Qtconsole >=4.2.0 – for an enhanced Python interpreter.

• Rope >=0.9.4 and Jedi >=0.9.0 – for code completion, go-to-definition and calltips on the Editor.

• Pyflakes – for real-time code analysis.

• Sphinx – for the Help pane rich text mode and to get our documentation.

• Pygments >=2.0 – for syntax highlighting and code completion in the Editor of all file types it supports.

2.3. Installing on Linux 7

https://pypi.python.org/pypi/pip/
http://packages.debian.org/fr/sid/spyder.
https://aur.archlinux.org/packages/?K=spyder
https://admin.fedoraproject.org/pkgdb/acls/name/spyder?_csrf_token=ab2ac812ed6df3abdf42981038a56d3d87b34128
http://packages.gentoo.org/package/dev-python/spyder
https://build.opensuse.org/package/show?package=python-spyder&project=home%3Aocefpaf
http://mageia.madb.org/package/show/name/spyder
http://www.python.org/
https://www.riverbankcomputing.com/software/pyqt/download5
https://www.riverbankcomputing.com/software/pyqt/download
http://jupyter.org/qtconsole/stable/
http://rope.sourceforge.net/
http://jedi.jedidjah.ch/en/latest/
http://pypi.python.org/pypi/pyflakes
http://sphinx.pocoo.org
http://pygments.org/

Spyder Documentation, Release 3

• Pylint – for static code analysis.

• Pycodestyle – for style analysis.

• Psutil – for memory/CPU usage in the status bar.

• Nbconvert – to manipulate Jupyter notebooks on the Editor.

• Qtawesome >=0.4.1 – for an icon theme based on FontAwesome.

• Pickleshare – To show import completions on the Editor and Consoles.

• PyZMQ – To run introspection services on the Editor asynchronously.

• QtPy >=1.1.0 – To run Spyder with PyQt4 or PyQt5 seamlessly.

• Chardet >=2.0.0– Character encoding auto-detection in Python.

• Numpydoc Used by Jedi to get return types for functions with Numpydoc docstrings.

Optional modules

• Matplotlib >=1.0 – for 2D and 3D plotting in the consoles.

• Pandas >=0.13.1 – for view and editing DataFrames and Series in the Variable Explorer.

• Numpy – for view and editing two or three dimensional arrays in the Variable Explorer.

• Sympy >=0.7.3 – for working with symbolic mathematics in the IPython console.

• Scipy – for importing Matlab workspace files in the Variable Explorer.

• Cython >=0.21 – Run Cython files or Python files that depend on Cython libraries in the IPython console.

Installation procedure

1. If you use Anaconda, you need to run this command to install Spyder:

conda install spyder

2. If you don’t use Anaconda, you need to run:

pip install --upgrade spyder

Run without installing

You can execute Spyder without installing it first by following these steps:

1. Unzip the source package

2. Change current directory to the unzipped directory

3. Run Spyder with the command python bootstrap.py

4. (Optional) Build the documentation with python setup.py build_doc.

This is especially useful for beta-testing, troubleshooting and development of Spyder itself.

8 Chapter 2. Installation

http://www.logilab.org/project/pylint
https://pypi.python.org/pypi/pycodestyle
http://code.google.com/p/psutil/
http://nbconvert.readthedocs.org/
https://github.com/spyder-ide/qtawesome
https://github.com/zeromq/pyzmq
https://github.com/spyder-ide/qtpy
https://github.com/chardet/chardet
https://github.com/numpy/numpydoc
http://matplotlib.sourceforge.net/
http://pandas.pydata.org/
http://numpy.scipy.org/
http://www.sympy.org/es/
http://www.scipy.org/
http://cython.org/

Spyder Documentation, Release 3

Installing the development version

If you want to try the next Spyder version, you have to:

1. Install Spyder requirements

2. Install Git, a powerful source control management tool.

3. Clone the Spyder source code repository with the command:

git clone https://github.com/spyder-ide/spyder.git

4. To keep your repository up-to-date, run

git pull

inside the cloned directory.

5. (Optional) If you want to read the documentation, you must build it first with the command

python setup.py build_doc

Help and support

Spyder websites:

• For bug reports and feature requests you can go to our website.

• For discussions and help requests, you can suscribe to our Google Group.

2.5. Installing the development version 9

http://git-scm.com/downloads
https://github.com/spyder-ide/spyder/issues
http://groups.google.com/group/spyderlib

Spyder Documentation, Release 3

10 Chapter 2. Installation

CHAPTER 3

Command line options

Spyder’s command line options are the following:

Options:

-h, --help show this help message and exit

--new-instance Run a new instance of Spyder, even if the single instance mode has been

turned on (default)

--defaults Reset configuration settings to defaults

--reset Remove all configuration files!

--optimize Optimize Spyder bytecode (this may require administrative privileges)

-w WORKING_DIRECTORY, --workdir=WORKING_DIRECTORY Default working di-

rectory

--show-console Do not hide parent console window (Windows)

--multithread Internal console is executed in another thread (separate from main applica-

tion thread)

--profile Profile mode (internal test, not related with Python profiling)

--window-title=WINDOW_TITLE String to show in the main window title

11

Spyder Documentation, Release 3

12 Chapter 3. Command line options

CHAPTER 4

Editor

Spyder’s text editor is a multi-language editor with features such as syntax coloring, code analysis (real-time code

analysis powered by pyflakes and advanced code analysis using pylint), introspection capabilities such as code com-

pletion, calltips and go-to-definition features (powered by rope), function/class browser, horizontal/vertical splitting

features, etc.

Function/class/method browser:

13

Spyder Documentation, Release 3

Code analysis with pyflakes:

Horizontal/vertical splitting feature:

14 Chapter 4. Editor

Spyder Documentation, Release 3

How to define a code cell

A “code cell” is a concept similar to MATLAB’s “cell” (except that there is no “cell mode” in Spyder), i.e. a block

of lines to be executed at once in the current interpreter (Python or IPython). Every script may be divided in as many

cells as needed.

Cells are separated by lines starting with:

• #%% (standard cell separator)

• # %% (standard cell separator, when file has been edited with Eclipse)

• # <codecell> (IPython notebook cell separator)

Related plugins:

• Console

• File Explorer

• Find in files

4.1. How to define a code cell 15

Spyder Documentation, Release 3

16 Chapter 4. Editor

CHAPTER 5

IPython Console

Spyder’s IPython Console implements a full two-process IPython session where a lightweight front-end interface

connects to a full IPython kernel on the back end. Visit the IPython project website for full documentation of IPython’s

many features.

17

http://ipython.org/

Spyder Documentation, Release 3

From the Consoles menu, Spyder can launch IPython Console instances that attach to kernels that are managed by

Spyder itself or it can connect to external kernels that are managed by IPython Qt Console sessions or the IPython

Notebook.

When “Connect to an existing kernel” is selected, Spyder prompts for the kernel connection file details:

18 Chapter 5. IPython Console

Spyder Documentation, Release 3

IPython Consoles that are attached to kernels that were created by Spyder support the following features:

• Code completion

• Variable explorer with GUI-based editors for arrays, lists, dictionaries, strings, etc.

• Debugging with standard Python debugger (pdb): at each breakpoint the corresponding script is opened in the

Editor at the breakpoint line number

• User Module Deleter (see Console for more details)

IPython Consoles attached to external kernels support a smaller feature set:

• Code completion

• Debugging toolbar integration for launching the debugger and sending debugging step commands to the kernel.

Breakpoints must be set manually from the console command line.

Reloading modules: the User Module Reloader (UMR)

When working with Python scripts interactively, one must keep in mind that Python import a module from its source

code (on disk) only when parsing the first corresponding import statement. During this first import, the byte code

is generated (.pyc file) if necessary and the imported module code object is cached in sys.modules. Then, when re-

importing the same module, this cached code object will be directly used even if the source code file (.py[w] file) has

changed meanwhile.

This behavior is sometimes unexpected when working with the Python interpreter in interactive mode, because one

must either always restart the interpreter or remove manually the .pyc files to be sure that changes made in imported

modules were taken into account.

The User Module Reloader (UMR) is a Spyder console’s exclusive feature that forces the Python interpreter to reload

modules completely when executing a Python script.

For example, when UMR is turned on, one may test complex applications within the same Python interpreter without

having to restart it every time (restart time may be relatively long when testing GUI-based applications).

Related plugins:

• Help

• Editor

• File Explorer

5.1. Reloading modules: the User Module Reloader (UMR) 19

Spyder Documentation, Release 3

20 Chapter 5. IPython Console

CHAPTER 6

Debugging

Debugging in Spyder is supported thanks to the following Python modules:

• pdb: the Python debugger, which is included in Python standard library.

• winpdb: a graphical frontend to pdb, which is an external package (in the Editor, press F7 to run winpdb on the

currently edited script).

Debugging with pdb

The Python debugger is partly integrated in Spyder:

• Breakpoints may be defined in the Editor.

– Simple breakpoints can be set from the Run menu, by keyboard shortcut (F12 by default), or by double-

click to the left of line numbers in the Editor.

– Conditional breakpoints can also be set from the Run menu, by keyboard shortcut (Shift+F12 by default),

or by Shift+double-click to the left of line numbers in the Editor.

• The current frame (debugging step) is highlighted in the Editor.

• At each breakpoint, globals may be accessed through the Variable Explorer.

For a simple, yet quite complete introduction to pdb, you may read this: http://pythonconquerstheuniverse.wordpress.

com/category/python-debugger/

Related plugins:

• Editor

• Console

21

http://pythonconquerstheuniverse.wordpress.com/category/python-debugger/
http://pythonconquerstheuniverse.wordpress.com/category/python-debugger/

Spyder Documentation, Release 3

22 Chapter 6. Debugging

CHAPTER 7

Console

The Console is where you may enter, interact with and visualize data, inside a command interpreter. All the commands

entered in the console are executed in a separate process, thus allowing the user to interrupt any process at any time.

Many command windows may be created in the Console:

• Python interpreter

• Running Python script

• System command window (this terminal emulation window has quite limited features compared to a real ter-

minal: it may be useful on Windows platforms where the system terminal is not much more powerful - on the

contrary, on GNU/Linux, a real system terminal is opened, outside Spyder)

Python-based command windows support the following features:

23

Spyder Documentation, Release 3

• Code completion and calltips

• Variable explorer with GUI-based editors for arrays, lists, dictionaries, strings, etc.

• Debugging with standard Python debugger (pdb): at each breakpoint the corresponding script is opened in the

Editor at the breakpoint line number

• User Module Deleter (see below)

Related plugins:

• Help

• History log

• Editor

• File Explorer

24 Chapter 7. Console

CHAPTER 8

Variable Explorer

The variable explorer shows the namespace contents (i.e. all global object references) of the current console

The following screenshots show some interesting features such as editing lists, strings, dictionaries, NumPy arrays, or

25

Spyder Documentation, Release 3

plotting/showing NumPy arrays data.

26 Chapter 8. Variable Explorer

Spyder Documentation, Release 3

27

Spyder Documentation, Release 3

Supported types

The variable explorer can’t show all types of objects. The ones currently supported are:

1. Pandas DataFrame, TimeSeries and DatetimeIndex objects

28 Chapter 8. Variable Explorer

Spyder Documentation, Release 3

2. NumPy arrays and matrices

3. PIL/Pillow images

4. datetime dates

5. Integers

6. Floats

7. Complex numbers

8. Lists

9. Dictionaries

10. Tuples

11. Strings

Related plugins:

• IPython Console

8.1. Supported types 29

Spyder Documentation, Release 3

30 Chapter 8. Variable Explorer

CHAPTER 9

Help

The help plugin works together with the Console and the Editor: it shows automatically documentation available when

the user is instantiating a class or calling a function (pressing the left parenthesis key after a valid function or class

name triggers a call in the help pane).

Note that this automatic link may be disabled by pressing the “Lock” button (at the top right corner of the window).

Of course, one can use the documentation viewer directly by entering an object name in the editable combo box field,

or by selecting old documentation requests in the combo box.

Plain text mode:

31

Spyder Documentation, Release 3

Rich text mode:

32 Chapter 9. Help

Spyder Documentation, Release 3

Sometimes, when docstrings are not available or not sufficient to document the object, the documentation viewer can

show the source code (if available, i.e. if the object is pure Python):

Related plugins:

• Console

• Editor

33

Spyder Documentation, Release 3

34 Chapter 9. Help

CHAPTER 10

Projects

Spyder allows users to associate a given directory with a project. This has two main advantages:

1. Projects remember the list of open files in Editor. This permits to easily work on several coding efforts at the

same time.

2. The project’s path is added to the list of paths Python looks modules for, so that modules developed as part of a

project can be easily imported in any console.

To create a project, it is necessary to select the New Project entry from the Projects menu:

35

Spyder Documentation, Release 3

When a project is activated, the Project explorer pane is shown, which presents a tree view structure of the current

project

Through this pane it is possible to make several operations on the files that belong to project

36 Chapter 10. Projects

Spyder Documentation, Release 3

Note: Projects are completely optional and not imposed on users, i.e. users can work without creating any project.

Version Control Integration

Spyder has limited integration with Git and Mercurial. Commit and browse commands are available by right-clicking

on relevant files that reside within an already initialized repository. This menu assume that certain commands are

available on the system path.

• For Mercurial repositories, TortoiseHG must be installed, and either thg or hgtk must be on the system path.

• For git repositories, the commands git and gitk must be on the system path. For Windows systems, the

10.1. Version Control Integration 37

http://git-scm.com/
http://mercurial.selenic.com/
http://tortoisehg.bitbucket.org/

Spyder Documentation, Release 3

Git for Windows package provides a convenient installer and the option to place common git commands on the

system path without creating conflicts with Windows system tools. The second option in the dialog below is

generally a safe approach.

38 Chapter 10. Projects

https://git-for-windows.github.io/

CHAPTER 11

Static code analysis

The static code analysis tool may be used directly from the Editor, or by entering manually the Python module or

package path - i.e. it works either with .py (or .pyw) Python scripts or with whole Python packages (directories

containing an __init__.py script).

39

Spyder Documentation, Release 3

Related plugins:

• Editor

40 Chapter 11. Static code analysis

CHAPTER 12

File Explorer

The file explorer pane is a file/directory browser allowing the user to open files with the internal editor or with the

appropriate application (Windows only).

41

Spyder Documentation, Release 3

Context menus may be used to run a script, open a terminal window or run a Windows explorer window (Windows

only):

42 Chapter 12. File Explorer

Spyder Documentation, Release 3

Related plugins:

• IPython Console

• Editor

43

Spyder Documentation, Release 3

44 Chapter 12. File Explorer

CHAPTER 13

History log

The history log plugin collects command histories of Python/IPython interpreters or command windows.

Related plugins:

• Console

45

Spyder Documentation, Release 3

46 Chapter 13. History log

CHAPTER 14

Find in files

The Find in Files plugin provides text search in whole directories or mercurial repositories (or even in PYTHONPATH)

with regular expression support for maximum search customization.

Related plugins:

• Editor

47

Spyder Documentation, Release 3

48 Chapter 14. Find in files

CHAPTER 15

Online help

The online help plugin provides an internal web browser to explore dynamically generated Python documentation on

installed module, including your own modules (this documentation is provided by a pydoc server running in back-

ground).

Related plugins:

• Help

49

Spyder Documentation, Release 3

50 Chapter 15. Online help

CHAPTER 16

Internal Console

The Internal Console is dedicated to Spyder internal debugging or may be used as an embedded Python console in

your own application. All the commands entered in the internal console are executed in the same process as Spyder’s,

but the Internal Console may be executed in a separate thread (this is optional and for example this is not the case in

Spyder itself).

51

Spyder Documentation, Release 3

The internal console support the following features:

• Code completion and calltips

Indices and tables:

• genindex

• search

52 Chapter 16. Internal Console

	Overview
	Installation
	Installing on Windows Vista/7/8/10
	Installing on MacOS X
	Installing on Linux
	Installing or running directly from source
	Installing the development version
	Help and support

	Command line options
	Editor
	How to define a code cell

	IPython Console
	Reloading modules: the User Module Reloader (UMR)

	Debugging
	Debugging with pdb

	Console
	Variable Explorer
	Supported types

	Help
	Projects
	Version Control Integration

	Static code analysis
	File Explorer
	History log
	Find in files
	Online help
	Internal Console

